

1 功能块功能描述

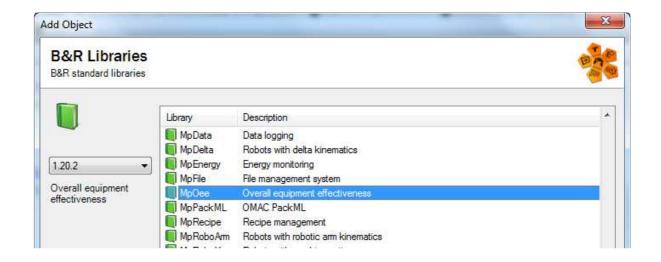
OEE 是"overall equipment effectiveness"(设备综合效率)的缩写,可以用来测量系统的生产效率和不足。该 mapp 组件另外还提供了系统的其它统计数据,可以导出也可以在 visu 中显示。

该功能提供了 OEE 及相关参数(Availability,Performance,Quality)计算,能够实现 班次信息统计、机器状态统计,并且可以将统计以文件形式导出。另外提供了三个 UI 功能 块,可以在上位实现班次信息统计列表、机器状态时间列表的显示,以及 OEE 及相关参数 的 Trend 图形化显示。

2 功能块软件配置信息

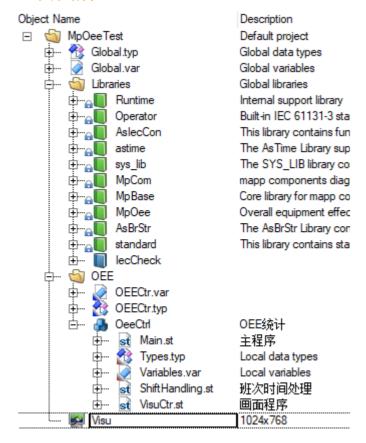
AS 版本	AS4.10.2.37	操作系统版本	C4.72	mapp 版本	V5.22.1
需要库	МрОее				
编写人	葛天佑	测试人		审核人	
项目名称	MpOeeTest				
任务说明	OeeCtrl: MpOee 功能测试。完善项目,添加班次修改功能。				

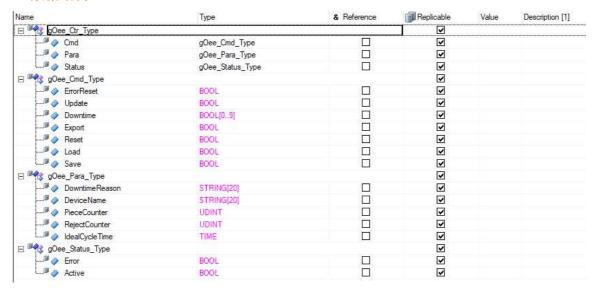
3版本信息


软件版本	修改内容	修改人
V1.000	初版	
V1.01	修改一些文字描述	穆珊珊
V2.0	基于 Mapp5.22 开发,完善基本功能,添加时间保护程序,添加屏幕在线修改班次功能。	葛天佑

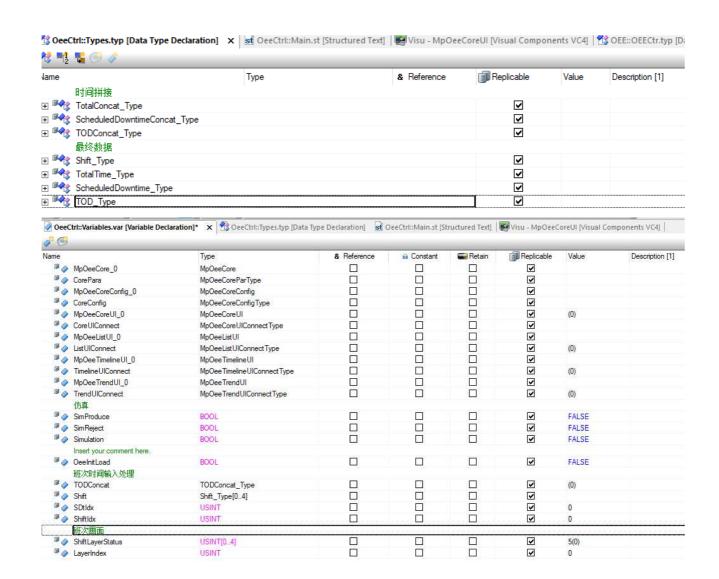
4 AS 基础编程

4.1 添加库

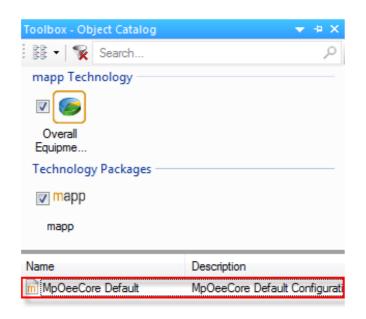

添加库 MpOee。



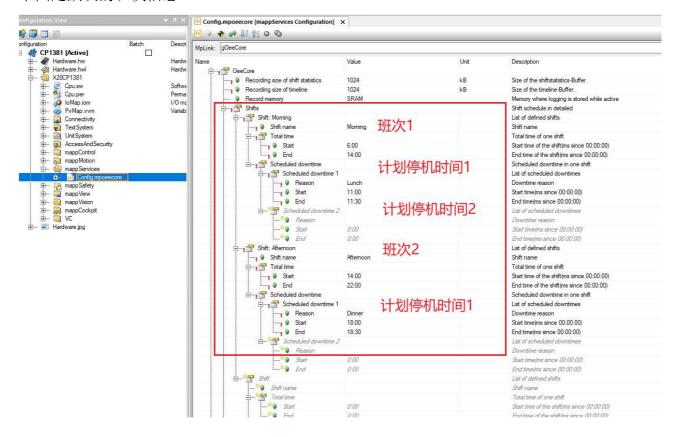
4.2 程序及数据结构


4.2.1 程序结构

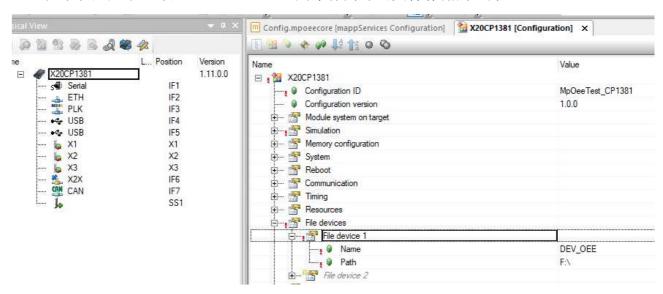
4.2.2 数据结构



4.3 添加配置文件


首先,添加 mapp 配置文件夹。在 Configuration View 中的 X20CP1381 文件夹下,添加 mapp 文件夹。

添加 mappOee 配置文件。只需要添加一个 MpOeeCore 文件。该文件用来配置具体的工作 班次信息。添加配置文件后,相应的 MpLink 也会随之自动添加。打开配置文件,MpLink 的 名字显示在最顶部。如果需要,可以修改各配置文件中的 MpLink 的名字。本例中,使用默 认名字。


配置文件中,主要的信息就是班次信息的配置。包括班次名称(如早班),工作时间 (如 6:00~14:00),及工作时间内计划内的停机时间(如午饭时间 11:00~11:30)。下图是默认的班次信息。

4.4 设置 File Device

在系统配置中,添加 file device,用来作为导出文件存储的地方。

4.5 添加功能块 MpOeeCore

该功能块根据给定的数据(目标产品,实际产品,合格产品等)来计算综合设备效率,是 Oee 管理的核心功能块。

连接 MpLink: 在 "MpLink" 这个输入端输入配方配置文件中的 MpLink 变量的地址。

使能功能块: Enable 输入端置 1 后功能块运行。

数据存储设备: 在"DeviceName"输入端数据存储设备的设备名的地址。

定义配方名: "FileName"输入端用来指定所存储配方的文件名。需要地址形式。

OEE 核心参数: "Parameters" 输入端给出 CorePara(设置产品生产周期)的地址。

```
MpOeeCore_0.MpLink
                                 := ADR(gOeeCore);
MpOeeCore_0.Enable
                                 := NOT (MpOeeCore_0.Error);
MpOeeCore 0.Parameters
                                 := ADR(CorePara);
MpOeeCore 0.Update
                                 := gOeeCtr.Cmd.Update;
MpOeeCore 0.DeviceName
                                 := ADR('DEV OEE');
// MpOeeCore_0.Downtime
                                     := Downtime:
MpOeeCore_0.DowntimeReason
                                 := ADR(gOeeCtr.Para.DowntimeReason);
MpOeeCore_0.PieceCounter
                                 := gOeeCtr.Para.PieceCounter;
MpOeeCore_0.RejectCounter
                                 := gOeeCtr.Para.RejectCounter;
MpOeeCore_0.Export
                                 := gOeeCtr.Cmd.Export;
MpOeeCore_0.Reset
                                 := gOeeCtr.Cmd.Reset;
```

当 MpOeeCore 激活后,就会收集当前班次的 Oee 数据。

如果机器遭遇停机(计划外停机),那么必须通过"Downtime"输入端来指明。只要这个输入端是激活状态,时间都算作"Downtime"(停机时间)。机器在这个时间段内是不生产的。计划外停机的原因需要在"DowntimeReason"这个输入端说明,例如:传送带错误。

机器开机后生产的总的产品数量通过"PiececCounter"输入端输入,机器开机后,产品计数从 0 开始并且计数所有产品。"RejectCounter"输入端用来计数所有被排除的产品。产品的计数不是由 MpOeeCore 来执行的,MpOeeCore 只是简单的把适当的数据分配给相应的班次,以及在 OEE 统计中使用这些数据。

下图是模拟生产的程序。

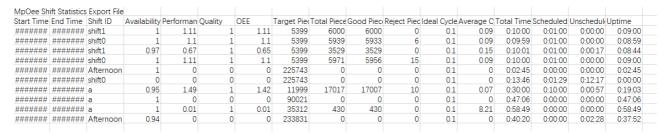
下载程序,并且在画面中手动控制 Simulation, SimProduce,

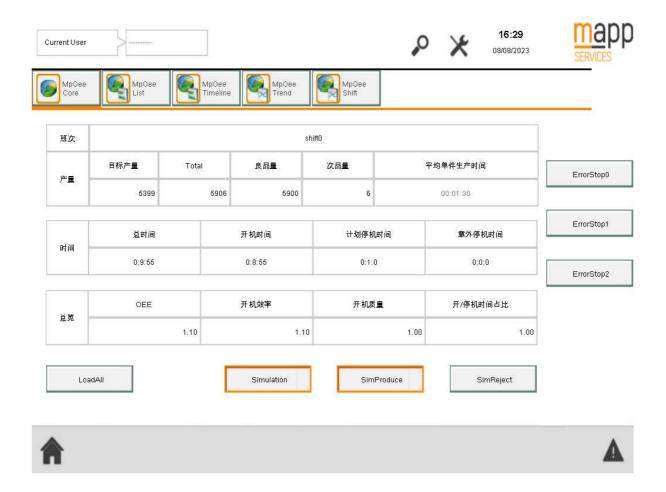
gOeeCtr.Cmd.Downtime[0],就可以观察到计算得到的OEE及其它三个参数的值。

Export

"Export"命令会把当前数据从内存中导出到文件中。"ExportDone"输出端表示导出命令已经成功执行。导出文件会包含当前班次的统计数据,以及带有最后事件的时间列表(状态改变)。

```
ShiftStatistics_2023_08_08_16_45.csv 2023/8/8 16:44
Timeline_2023_08_08_16_45.csv 2023/8/8 16:44
```


每次当有事件发生时,就会在时间表中生成一条记录。例如,会记录停机时间以及发生的班次等。如果机器正在运行,则会记入开机时间,同样也会生成一条记录。最终时间表看起来会如下图一样:


班次统计

在班次统计中,每个班次都会生成一条记录。班次相关的所有 OEE 相关数据都包含在内,例如: OEE 值,性能,使用率,班次的开始和结束时间等,如下图所示:

下图是测试程序页面

4.6 添加功能块 MpOeeCoreConfig

该功能块用来配置班次及其它配置选项,从 mplink 文件读取或写入班次信息。**本版本** (**V2.0**) 实现了在线修改功能,并加入时间保护。

该功能块使用的 MpLink 和 MpOeeCore 一样。它负责为 MpOeeCore 保存或调用配置文件。

"Configuration"输入端用来指定配置变量。

"Save"命令用来保存配置文件。

"Load"命令用来加载配置文件,Load 上来的参数会覆盖当前 MpOeeCoreConfigType 结构体中的参数。

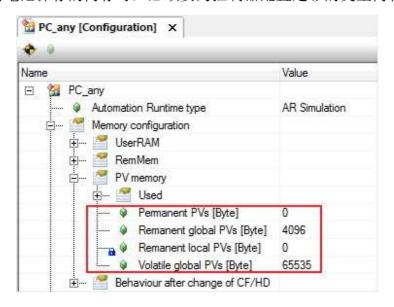
```
MpOeeCoreConfig_0.MpLink := ADR(gOeeCore);
MpOeeCoreConfig_0.Enable := NOT(MpOeeCoreConfig_0.Error);
MpOeeCoreConfig_0.Configuration := ADR(CoreConfig);
MpOeeCoreConfig_0.Load := gOeeCtr.Cmd.Load;
MpOeeCoreConfig_0.Save := gOeeCtr.Cmd.Save;
```


配置 MpOeeCoreConfigType (上图中 Config 变量)结构体。该结构体与配置文件内容一致,以下说明同样适用于配置文件中的参数配置。

∃ 🧼 Config	MpOeeCoreConf	local	
─ RecordingSizeShiftStatistics	UDINT		20
─ RecordingSizeTimeline	UDINT		20
→ Record Memory	MpOeeMemoryE		mpOEE_MEM_SRAM
- Shifts Shifts	MpOeeShiftParT		
⇔ Shifts[0]	MpOeeShiftParT		
│	STRING[20]		'Moming'
	MpOeeTimeSlot		
—	TIME_OF_DAY		TOD#00:00:00
L ♦ End	TIME_OF_DAY		TOD#14:00:00
	MpOeeSchedule		
	MpOeeShiftParT		
	MpOeeShiftParT		
⇔ Shifts[3]	MpOeeShiftParT		
±- ♦ Shifts[4]	MpOeeShiftParT		
É- ♦ Export	MpOeeExportTy		
─ Shift Statistics	BOOL		TRUE
─ Shift Statistics File Name Pattern	STRING[50]		'ShiftStatistics_%Y_%m_%d_%H_%M.csv
─	BOOL		TRUE
→ TimelineFileNamePattem	STRING[50]		'Timeline_%Y_%m_%d_%H_%M.csv'
─ → TimeStampPattem	STRING[50]		"%Y-%m-%d %H:%M:%S'
→ Decimal Digits	UINT		2
─ Column Separator	STRING[1]		7
∟ DecimalMark	STRING[1]		**

该配置变量定义了机器在工作中所使用的单个班次信息。使用"班次"参数定义了下列设置:

- 班次名称
- 班次的开始和结束时间
- 计划内的停机时间(例如:午饭时间)


机器的每次状态更新都会产生一条记录,记录的存储区域可以使用"RecordMemory"来指定,有以下可选选项:

- MpOEE_MEM_SRAM: 条件允许下的第一选择。如果有充足的 SRAM 可用,所有记录都可以直接保存在这里,可用内存大小通过"RecordingSizeShiftStatistics"或者 "RecordingSizeTimeLine"来指定。
- mpOEE_MEM_ROM: 如果没有足够的 RAM 内存,那么可用这个设置把每条记录都传送到 USERROM 中,可用内存大小通过"RecordingSize"来指定。如果控制器掉电,这些记录也是永久保存(retain)的。但是 USERROM 是在每条记录之后访问的,速度较慢。

 mpOEE_MEM_TEMP: 如果有足够的 DRAM,所有的记录可以直接存储在 DRAM 中,可用内存大小通过"RecordingSizeShiftStatistics"或者"RecordingSizeTimeLine"来指定。 缺点就是当控制器掉电后数据会丢失。

注意: 当使用电池保存的内存时,必须要为控制器配置足够的变量内存,如下图。

如果当前数据已经导出,系统会按照 Export(MpOeeExportType)中的设置对文件命令等。导出文件名的命名使格式"ShiftStatisticsFileNamePatten"或者

"TimelineFileNamePattern":

- Default format (默认格式): ShiftStatistics_%Y_%m_%d_%H_%M.csv (例如, ShiftStatistics_1990_03_25_01_13)
- Adjusted format (调整格式,例如): Timeline_%d _%m_%Y (例如, Timeline_25_03_1990)

下表中是调整格式时的可用选项:

Code	Description
%u	Use UTC time (otherwise, local time will be used)
%H	Hour in 24-hour format. Zero at the beginning if necessary: 00 - 23
%I	Hour in 12-hour format. Zero at the beginning if necessary: 01 - 12
%k	Hour in 24-hour format: 0 - 23
%M	Minutes within an hour. Zero at the beginning if necessary: 00 - 59
%S	Seconds within a minute. Zero at the beginning if necessary: 00 - 59
%L	Milliseconds within a second. Zero at the beginning if necessary: 000 - 999
%z	Local shift to UTC time
%s	Seconds since 1 January 1970
%C	Four-digit year divided by 100. Displayed with two digits. Zero at the beginning if necessary: 00 - 99
%Y	Year as a four-digit number. Zero at the beginning if necessary
%у	The last two digits of the year. Zero at the beginning if necessary: 00 - 99
%m	Month. Zero at the beginning if necessary: 01 - 31
%d	Day of the month. Zero at the beginning if necessary: 01 - 31
%e	Day of the month: 1 - 31
%R	Time as 24-hour display: "%H:%M"
%T	Time as 24-hour display: "%H:%M:%S"
%D	Date formatted as: "%m/%d/%y"
%F	Date in accordance with ISO 8601: "%Y-%'m-%d"
%c	Date and time formatted as: "%F %T.%L"

想要导出的数据可以使用"Timeline"或者"ShiftStatistics"参数来定义。如果文件保存成,csv 格式,那么"ColumnSeparator"中设定的字符就用做数据之间的分隔符。

"DecimalMark"中设定的字符用作小数分隔符的显示字符。

● 班次/计划停机时间说明

班次时间的结束时间不可比开始时间靠前,程序已做保护,有进 service 可能; 设置班次时间后,不可使用空班次名称,否则肯定进 service。程序已做保护,赋值一个"shift"名称;

计划停机时间范围不可大于班次时间,否则肯定进 service,程序已做保护。

4.7 添加上位接口功能块 MpOeeListUI

该功能块用来建立班次信息列表的上位连接变量。

该功能块所使用的 MpLink 和 MpOeeCore 一样。所有 MpOeeCore 所记录的内容都会由 MpOeeListUI 显示出来。该功能块使用的前提是 MpOeeCore 功能块是激活的。

MpOeeListUI 在 VC4 和当前存储的记录之间建立了连接,通过 Refresh 命令可以更新 HMI 的上位显示应用。数据交换通过 MpOeeListUIConnectType(下图中 ListUIConnect 变量的数据类型)进行。

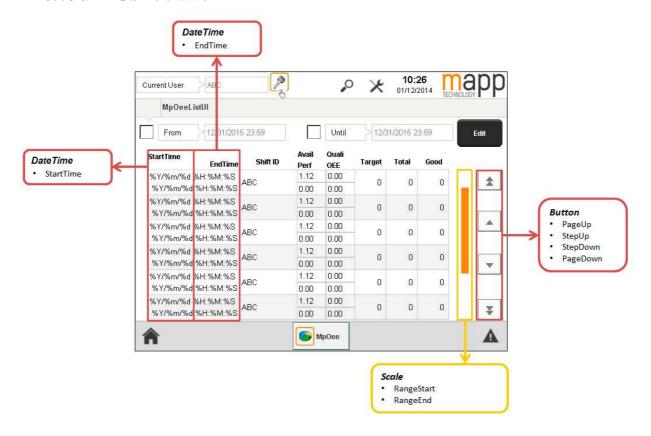
MpOeeListUIConnectType 说明

该数据类型包含上位显示的必需信息。

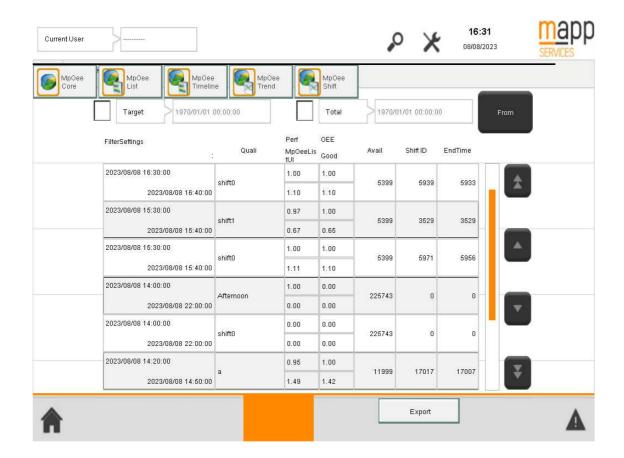
参数	数据类型	描述
Status	MpOeeUIStatusEnum	当前操作
Output	MpOeeUIListOutputType	输出信息
Filter	MpOeeUIFilterType	过滤记录信息

其中 Output (MpOeeUIListOutputType) 是主要的列表信息。

参数	数据类型	描述
StartTime	TIME_OF_DAY 类型	所有班次 ID 的开始时间
	数组[019]	
EndTime	TIME_OF_DAY 类型	所有班次 ID 的结束时间
	数组[019]	
ShiftName	字符串数组[019]	班次名称
Availability	REAL 类型数组[019]	可用性
Performance	REAL 类型数组[019]	性能
Quality	REAL 类型数组[019]	质量
OEE	REAL 类型数组[019]	综合设备效率
TargetPieces	UDINT 类型数组	班次开始后的目标产品生产数量



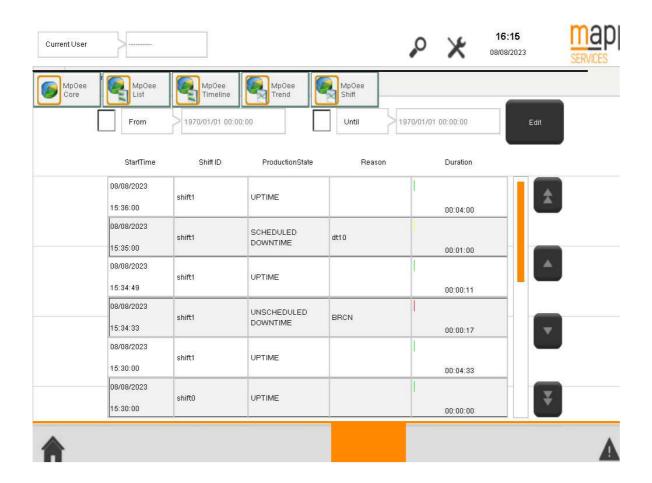
	[019]	
TotalPieces	UDINT 类型数组	班次开始后的实际产品生产数量
	[019]	
GoodPieces	UDINT 类型数组	班次开始后的合格产品生产数量
	[019]	
RejectPieces	UDINT 类型数组	班次开始后的次品产品生产数量
	[019]	
AverageCycleTime	TIME 类型数组[019]	班次开始后的平均产品生产周期
IdleCycleTime	TIME 类型数组[019]	班次开始后的平均产品空闲时间
TotalTime	MpOeeUITimeType	班次开始后的总的运行时间
	类型数组[019]	
SchedDowntime	MpOeeUITimeType	班次开始后的计划内停机
	类型数组[019]	
UnschedDowntime	MpOeeUITimeType	班次开始后的计划外停机
	类型数组[019]	
Uptime	MpOeeUITimeType	班次开始后的运行时间
	类型数组[019]	
PageUp	BOOL	跳到页面的最上端,之后每次向上滚动一页。
		VC4 连接: Button / Type: SetDatapoint 的数
		据点
PageDown	BOOL	跳到页面的最末端,之后每次向下滚动一页。
		VC4 连接: Button / Type: SetDatapoint 的数
		据点
StepUp	BOOL	选择列表中上一条
		VC4 连接: Button / Type: SetDatapoint 的数
		据点
StepDown	BOOL	选择列表中下一条
		VC4 连接: Button / Type: SetDatapoint 的数


		据点
RangeStart	REAL	连接到进度条,用来表明当前显示的是哪一部
		分。该参数连接的是范围的开始部分。总的范
		围应该对应于列表的长度,"Range"应该对应
		于一页中显示的长度。
		VC4 连接: Scale 的 StartDatapoint
RangeEnd	REAL	连接到进度条,用来表明当前显示的是哪一部
		分。该参数连接的是范围的结束部分。总的范
		围应该对应于列表的长度,"Range"应该对应
		于一页中显示的长度。
		VC4 连接: Scale 的 EndDatapoint

部分变量连接如下图所示:

下图是测试程序页面。

4.8 添加上位接口功能块 MpOeeTimeLineUI


该功能块将班次和他们的状态变化按时间顺序在上位显示出来。

该功能块所使用的 MpLink 和 MpOeeCore 一样。所有 MpOeeCore 所记录的内容都会由 MpOeeTimelineUI 显示出来。该功能块使用的前提是 MpOeeCore 功能块是激活的。MpOeeTimelineUI 在 VC4 和当前存储的记录之间建立了连接,,通过 Refresh 命令可以更新 HMI 的上位显示应用。数据交换通过 MpOeeTimelineUIConnectType(下图中TimelineUIConnect 变量)进行。

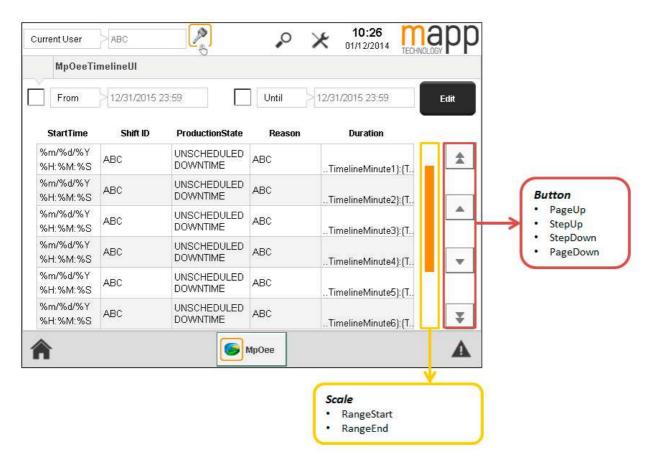
```
MpOeeTimelineUI_0.MpLink := ADR(gOeeCore);
MpOeeTimelineUI_0.Enable := 1;
MpOeeTimelineUI_0.UIConnect := ADR(TimelineUIConnect);
MpOeeTimelineUI_0();
```

该功能块列表的每个事件都表示机器的状态发生了变化。上位的列表显示如下图所示。

MpOeeTimelineUIConnectType 说明

参数	数据类型	描述
Status	MpOeeUIStatusEnum	当前操作
Output	MpOeeUITimelineOutputType	显示过滤后的班次统计信息
Filter	MpOeeUIFilterType	过滤班次统计信息

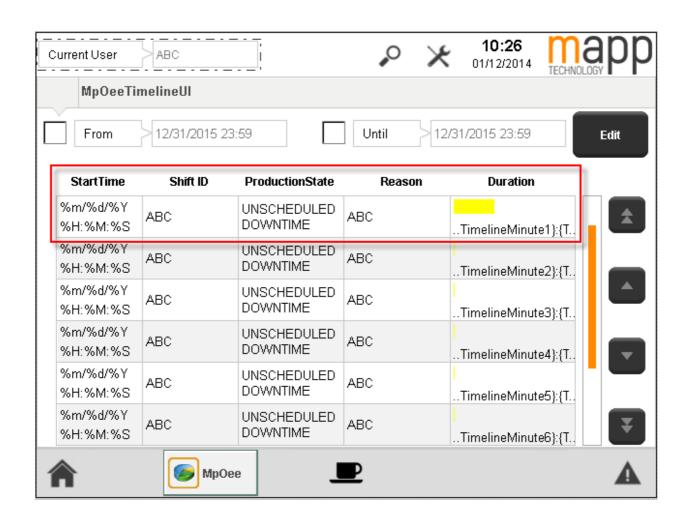
其中,Output – MpOeeUITimelineOutputType 是主要参数:


参数	数据类型	描述
Display	MpOeeUITimelineLine	当前班次的状态变化列表
	Type 类型数组[019]	
PageU	BOOL	跳到页面的最上端,之后每次向上滚动一
р		页。

		VC4 连接: Button / Type: SetDatapoint
		的数据点
PageD	BOOL	跳到页面的最末端,之后每次向下滚动一
own		页。
		VC4 连接: Button / Type: SetDatapoint
		的数据点
StepUp	BOOL	选择列表中上一条
		VC4 连接: Button / Type: SetDatapoint
		的数据点
StepDo	BOOL	选择列表中下一条
wn		VC4 连接: Button / Type: SetDatapoint
		的数据点
Range	REAL	连接到进度条,用来表明当前显示的是哪
Start		一部分。该参数连接的是范围的开始部分。总
		的范围应该对应于列表的长度,"Range"应该
		对应于一页中显示的长度。
		VC4 连接: Scale 的 StartDatapoint
Range	REAL	连接到进度条,用来表明当前显示的是哪
End		一部分。该参数连接的是范围的结束部分。总
		的范围应该对应于列表的长度,"Range"应该
		对应于一页中显示的长度。
		VC4 连接: Scale 的 EndDatapoint

后面6个参数的作用和之前的一样,可以参考下图,这里不再详细介绍。

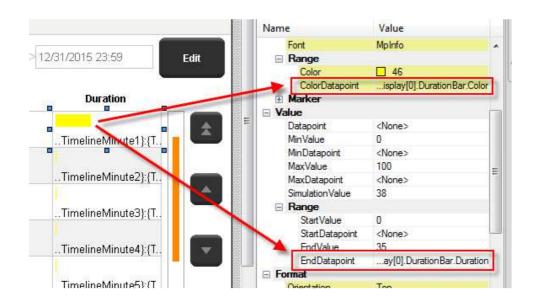
下图是测试程序画面



Display – MpOeeUITimelineLineType 结构体说明。该结构体主要用于显示具体的班次状态信息。

参数	数据类型	描述
StartTime	DATE_AND_TIME	状态的开始时间
ShiftName	STRING[20]	班次名称
ProductionState	MpOeeUIProductionStateEnum	生产状态
Reason	STRING[80]	产生状态的原因
Duration	MpOeeUITimeType	状态持续时间
DurationBar	MpOeeUITimeBargraphType	图形化状态持续时间

上面参数的内容分别对应于某一个状态的具体列表信息。

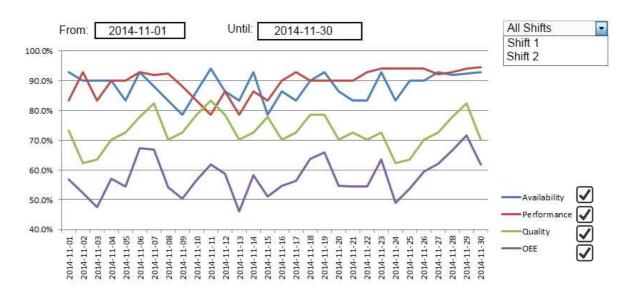


其中 Duration 和 DurationBar 都是显示某个状态的持续时间的。Duration 是以时间格式显示,但是这个参数不是时间类型,而是时、分、秒组合的结构体,mappDemo 中使用了text snippets 的方式将这三者组合在了一起。

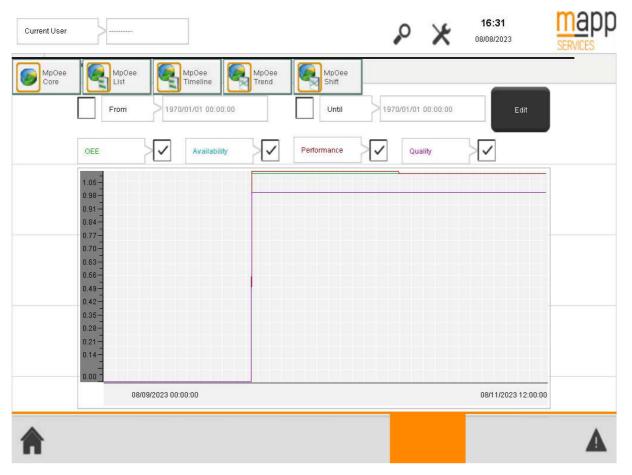
Index 📤	English
፭ ≣ 0	{TimelineHour1}:{TimelineMinute1}:{TimelineSecond1}
≣ 1	{TimelineHour2}:{TimelineMinute2}:{TimelineSecond2}
2	{TimelineHour3}:{TimelineMinute3}:{TimelineSecond3}
፭ 3	{TimelineHour4}:{TimelineMinute4}:{TimelineSecond4}
<u>4</u>	{TimelineHour5}:{TimelineMinute5}:{TimelineSecond5}
፭ 5	{TimelineHour6}:{TimelineMinute6}:{TimelineSecond6}

DurationBar 可以用棒状图的形式显示该状态的持续时间,还可以设置颜色。如果当前页面有 5 条 timeline,时间最长的那个是满的,其他按照比例调整长度。

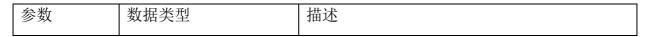
4.9 添加上位接口功能块 MpOeeTrendUI


该功能块可以以图的形式显示 OEE 和它的各个组成部分。

该功能块所使用的 MpLink 和 MpOeeCore 一样。所有 MpOeeCore 所记录的内容都会由 MpOeeTrendUI 显示出来。该功能块使用的前提是 MpOeeCore 功能块是激活的。MpOeeTrendUI 在 VC4 和当前存储的记录之间建立了连接,,通过 Refresh 命令可以更新HMI 的上位显示应用。数据交换通过 MpOeeTrendUIConnectType(下图中TrendUIConnect 变量)进行。

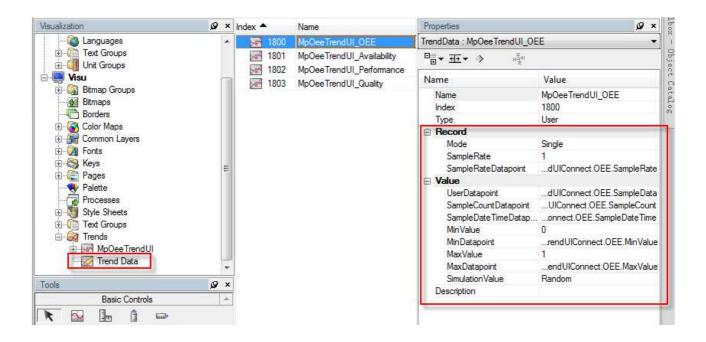

```
MpOeeTrendUI_0.MpLink := ADR(gOeeCore);
MpOeeTrendUI_0.Enable := NOT(MpOeeTrendUI_0.Error);
MpOeeTrendUI_0.UIConnect := ADR(TrendUIConnect);
```

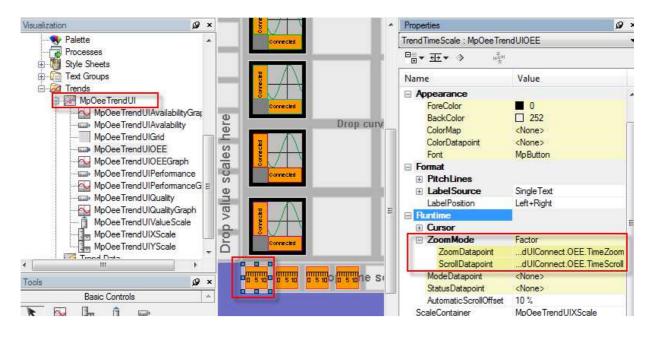
收集的 OEE 数据会显示多条 trend 曲线。



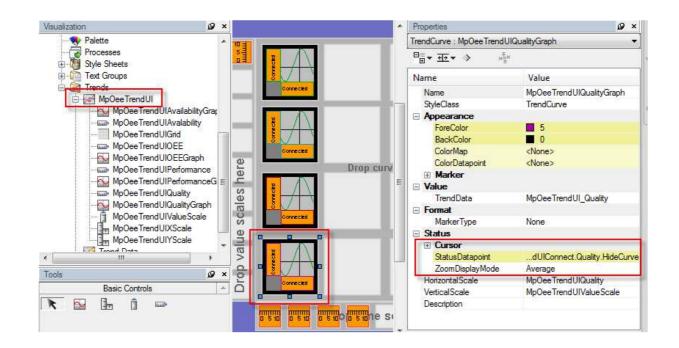
下图是测试程序页面

MpOeeTrendUIConnectType 说明


Status	MpOeeStatusEnum	当前操作
OEE	MpOeeUITrendType	综合设备效率(OEE)的图形化曲线
Availability	MpOeelOTrendType	使用率的图形化曲线
Performance	MpOeeUITrendType	性能的图形化曲线
Quality	MpOeeUITrendType	质量的图形化曲线
ShiftLlist	MpOeeUIShiftListType	选择想要显示曲线的班次
Filter	MpOeeUIFilterType	过滤班次统计信息


其中, MpOeeUITrendType 类型说明如下。

参数	数据类型	描述
SampleData	REAL 类型数组	trend 曲线中的值
	[0365]	
SampleRate	UDINT	trend 采样率
SampleCount	UDINT	现实的数据个数
SampleDateTime	DATE_AND_TIME	trend 数据记录的开始点时间
MinValue	REAL	Y轴显示的刻度的最小值
MaxValue	REAL	Y轴显示的刻度的最大值
HideCurve	BOOL	曲线的可见性
TimeZoom	REAL	Trend 时间轴的缩放
TimeScroll	REAL	Trend 时间轴的滚动


上述变量的关联位置如下。建议导入例子页面后,使用 refactor 替换为当前变量。

MpOeeUIShiftListType 说明。当有多个机器的 OEE 要显示时,可以做一个 Listbox,通过 Listbox 选择需要显示的机器的 OEE 曲线。

参数	数据类型	描述
ShiftNames	STRING[20]类型数组	己有班次列表
	[05]	VC4 连接: Listbox 的 TextDatapoint
SelectedIndex	UINT	列表中当前选择的记录的 Index 号
		VC4 连接: Listbox 的 IndexDatapoint
MaxSelection	USINT	列表最后一条记录的 Index 号
		VC4 连接: Listbox 的 MaxDatapoint

5 UI 功能块的通用结构体说明

MpOee 中共有 3 个 UI 功能块,其中 MpOeeListUI 和 MpOeeTimelineUI 这两个 UI 功能块都是对应于列表显示,列表的配置和功能有一定相似之处,因此也使用到了同样的结构体,下面统一介绍。

(1) UI 配置变量 UISetup

虽然 MpOeeListUI 和 MpOeeTimelineUI 这两个 UI 功能块的 UISetup 变量的结构体类型不一致,但结构体内容是一样的,和我们其它大多数 Mp 组件的 UISetup 一样。主要定义了列表中显示的条目数,和上下滚动时的预览数。

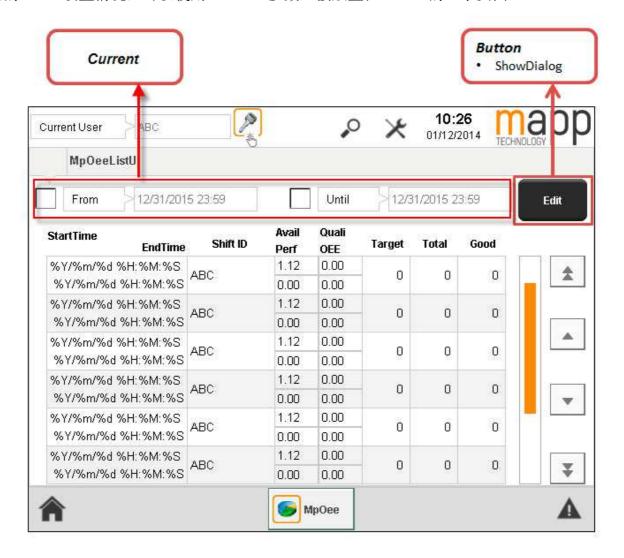
参数	数据类型	值	描述
*****ListSize	UINT	10	上位界面中一页中现实的条目个数
ScrollWindow	USINT	0	上下滚动时可预览的条目个数

(2) UIConnect 变量中的 Status 参数

MpOeeUIStatusEnum 是一个枚举类型,提供了当前的状态信息,包含以下值。

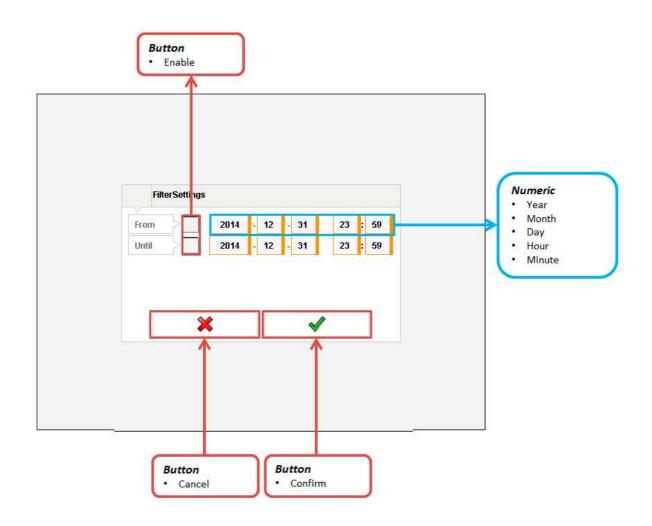
枚举值	描述
mpOEE_UI_STATUS_IDLE	当前没有操作
mpOEE_UI_STATUS_UPDATE	正在执行更新
mpOEE_UI_STATUS_FILTER	显示过滤结果窗口

(3) UIConnect 变量中的 Filter 参数


MpOeeUIFilterType

该结构体可以对数据进行过滤,以便于对数据的查找。

参数	数据类型	描述
ShowDialog	BOOL	用于弹出对话框的命令
		VC4 连接: Button / Type : SetDatapoint
		的数据点
Dialog	MpOeeUIFilterDialogType	设置 filter 的窗口
Current	MpOeeUICurrentFilterType	显示当前 filter 的设置
DefaultLayerStatus	UINT	Filter 设置窗口所在层的 Status
		Datapoint



ShowDialog 是一个命令,通常关联在一个按钮上,当按钮按下,弹出设置 Filter 的窗口,该窗口上的 Filter 设置使用的是 Dialog 参数。此外,为了能够直观的让操作人员了解当前的 Filter 设置情况,可以使用 Current 参数直接放置在 ListUI 的显示页面。

使用 Edit 按钮打开设置 Filter 的对话框如下图所:

6 数据说明:

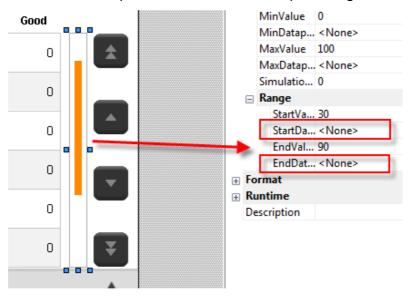
Availability: uptime / (uptime+unscheduled downtime)

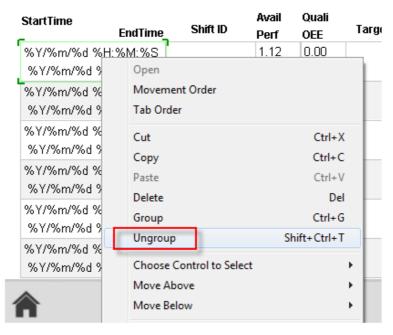
Performance: Total / Target * 100%

Quality: Good / Total * 100%

OEE: Availability * Performance * Quality

7 注意事项


注意 1:在配置的工作时间之外,功能块是不会产生输出的,也不会报警。在 mappDemo 中,配置的工作时间是 12:00~12:30。所以,如果是其它时间想要测试该功能,会发现该功能没有输出,不能产生 Timeline,list 和 trend。请在配置文件中修改工作时间,或将 CPU 时间改到 12:00。


注意 2: mappDemo 的 MpOeeListUI 页面的进度条那里没有连变量。应该分别连:

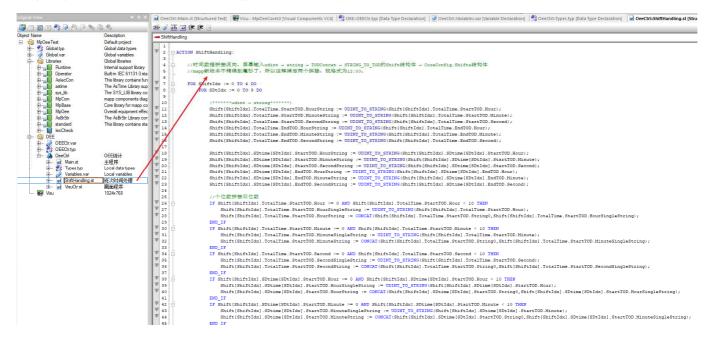
DataSource.Infrastructure.Oee.MpOeeListUIConnect.Output.RangeStart 和

DataSource.Infrastructure.Oee.MpOeeListUIConnect.Output.RangeEnd

注意 3: mappDemo 的 MpOee 的相关页面中,一些控件使用了组合功能。如果要修改属性的话,需要先 ungroup。

注意 4: 班次时间保护

班次时间的结束时间不可比开始时间靠前,程序已做保护,有进 service 可能;

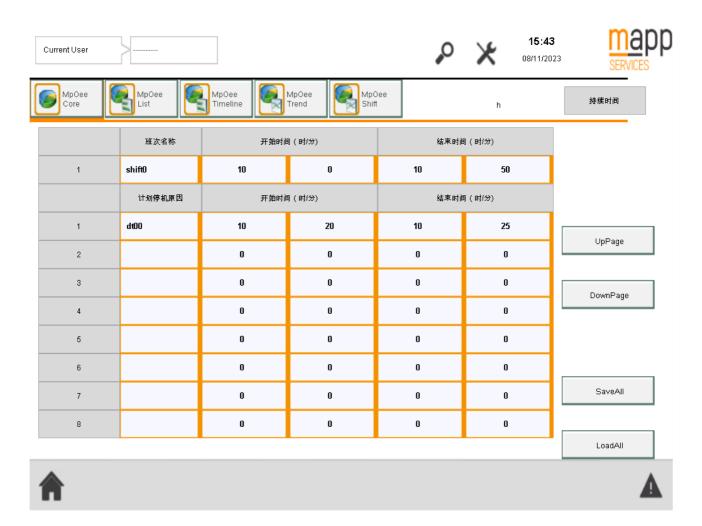


设置班次时间后,不可使用空班次名称,否则肯定进 service。程序已做保护,赋值一个"shift"名称;

计划停机时间范围不可大于班次时间,否则肯定进 service,程序已做保护。

5 班次在线输入及时间保护程序

本次修改主要增加了班次在线输入以及班次内的保护程序,比如班次名称不可为空。


6 画面及使用说明

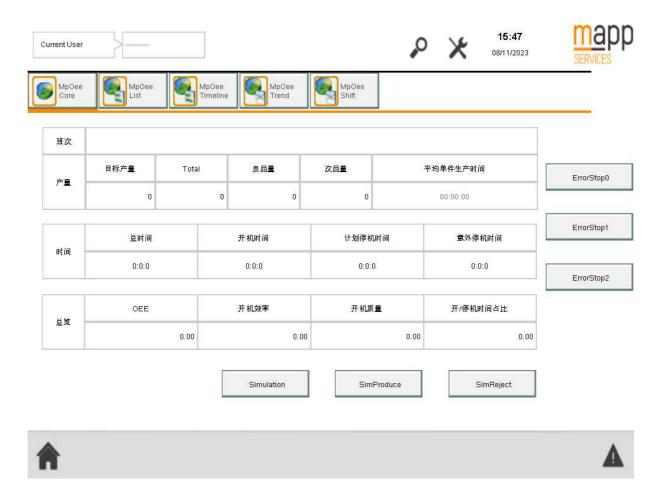
6.1 班次设置

测试程序首页就是班次设置页面,在班次设置页面可以设置 5 个班次信息及其计划停机原因,每个班次信息开放出 8 个计划停机原因(共 10 个)。设置完班次 1,点击 "DownPage",进入下一页设置班次 2。

设置结束点击 "SaveAll",写入 mplink 文件。

6.2 班次页面监控

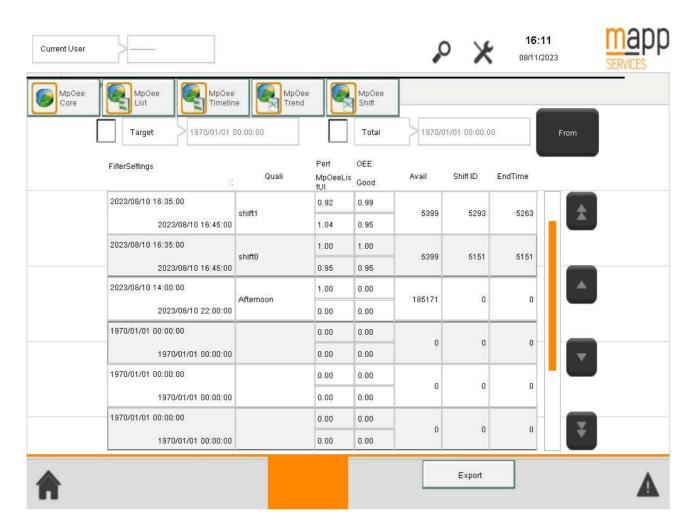
在生产页面,可以看到当前的班次信息。


Simulation: 开启仿真。开启后,"SimProduce" "SimReject"可以使用。

SimProduce: 模拟产品生产,开启后,良品量自动增加。

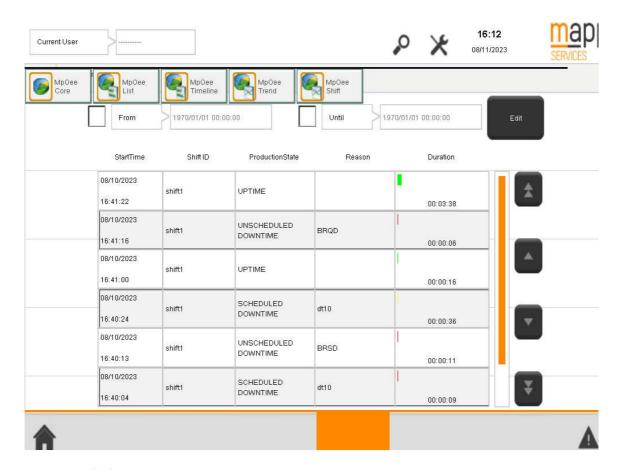
SimReject: 模拟不良品,点按一次i,次品量+1。

ErrorStop: 连接 DownTime,模拟故障停机。SimProduce 可以复位模拟故障停机。



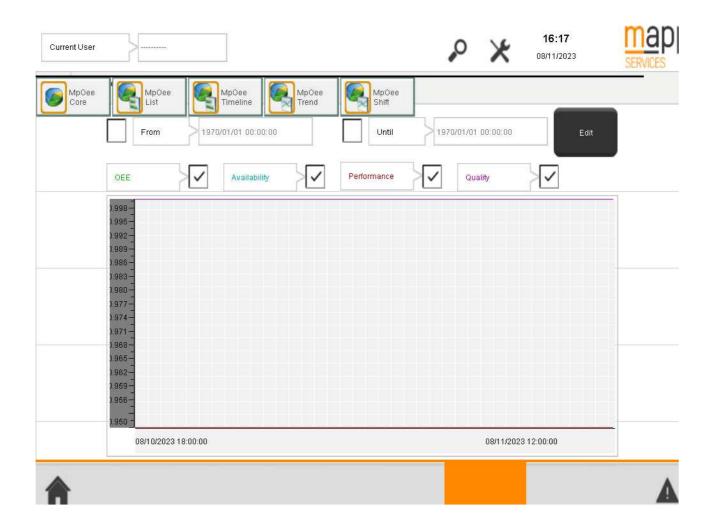
6.3 班次列表

记录各个班次的总览信息。



6.4 班次详情页面

记录班次的详情,包括生产、计划停机、意外停机等。



6.5 Trend 页面

在本页面,可以看到 OEE 等信息。

