

CHINA wE-talk

永磁伺服电机 ——从选型到应用

个人简介

李鹏

高级电机工程师

B&R Industrial Automation (China) Co., Ltd.

A member of the ABB Group

E-Mail: peng.li@br-automation.com

www.br-automation.com

目录

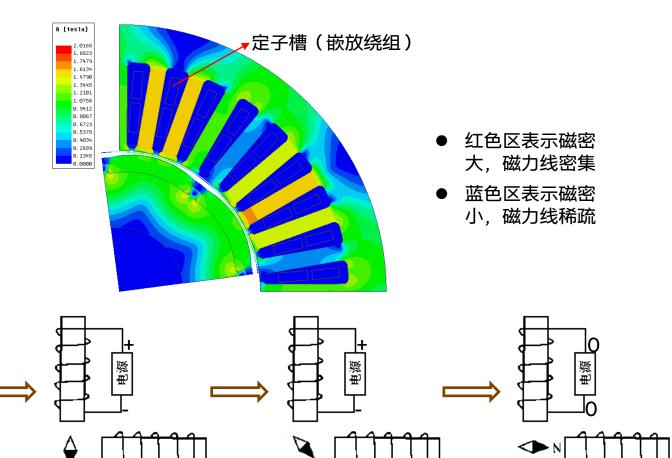
过程穿插11个重要电机术语

- 电机工作原理
- 伺服电机主要零部件
- 伺服电机选型
- 伺服电机的参数应用

电机工作原理

电机——多物理场耦合

● 洛伦兹力(左手定则)


适用于通电导体在磁场中受力计算

用于解释简易电机模型

● 电磁力作用(时空向量)

用于解释电机实际模型

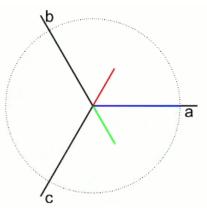
N ◆

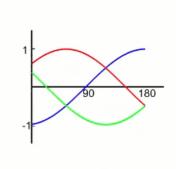
电源

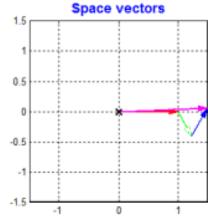
同步电机^① VS异步电机^②

对比

电机产生有效转矩的前提条件:

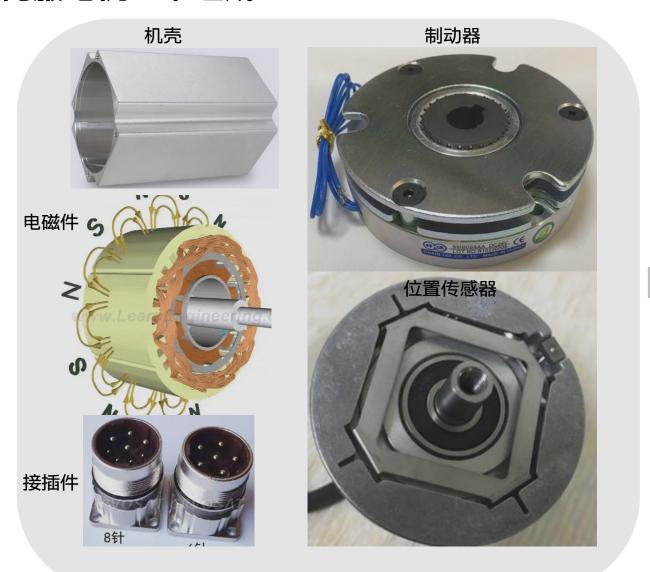

- 定转子极对数相同;
- 定转子磁场旋转转速相同;


定子的时空特性:


● 时间域:三相交变电流(随时间正弦变化)

● 空间域:三相相位空间相差120°

	同步电机	异步电机
定子磁场	连续旋转磁场(n_s)	连续旋转磁场(n_s)
转子磁场	永磁体励磁(持续 存在)	转子导体切割定子磁场 后产生感应电流励磁
转子转速	$n_{\scriptscriptstyle S}$	$(1-s)*n_s$
励磁电流	0	i_M
转矩电流	i_q	i_T
功率因数	≈ 1	< 1
效率	高	低



	同步电机	异步电机
成本	高	低
控制器	驱动器	变频器
伺服特性	更强	强
可靠性	强	更强
弱磁能力	一般	强
体积	小	大
控制难度	低	高

	同步电机	异步电机
齿槽转矩	有	无
转矩波动	大	小
剩磁转矩	有	无

伺服电机基本组成

选型主要参数

永磁电机

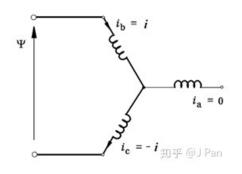
● 齿槽转矩③

由定子齿槽效应以及转子磁极分布决定; 随转子位置周期变化,幅值代表齿槽转矩大小; 周期为槽极数最小公倍数(设计优化可消除); 影响系统振动和噪音水平;

● 转矩波动

由齿槽转矩、电流谐波、凸极效应、磁路饱和等引起; 主要转矩波动分量频率为电频率的6/12倍; 影响系统振动和噪音水平;

● 反电势系数^④


1000r/min时线反电势有效值,单位V/krpm; 反电势波形谐波含量越低,其正弦性越好;

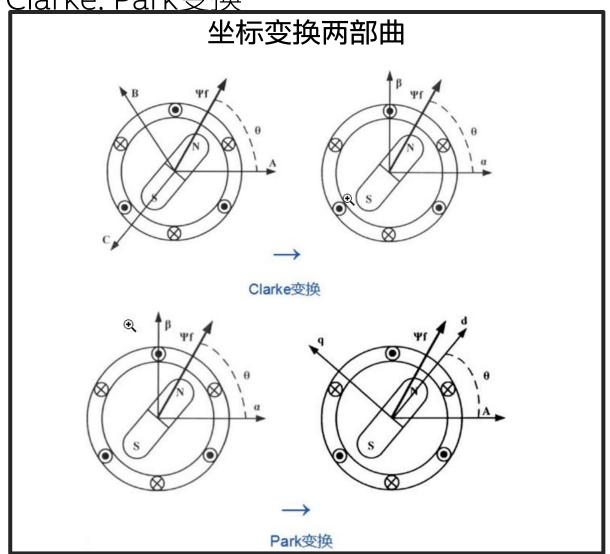
- 温升
- 散热方式

	过大	过小
转矩波动	系统振动大,噪音分贝高	设计难度大,采购成本高
反电势系数	最高转速时,母线电压不够, 需弱磁控制,或抬高母线电压	转矩系数较小,需要更大的 驱动电流,增加驱动成本
温升	电机过热	电机裕量大,系统成本高
极对数	高速时电磁频率高,开关频率 要求高	设计不合理,采购成本高
最高转速	轴承和机械设计难度大, 电机 成本高	不满足负载要求
额定转矩	电机裕量较大,系统成本高	电机过热损坏或寿命缩短
峰值转矩	电机裕量较大,系统成本高	不满足系统要求

控制相关参数

d®、q^勿轴电感(忽略漏感)

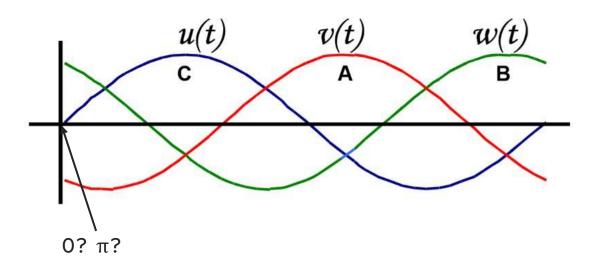
$$\begin{cases} L_d \approx \frac{3}{2} L_{s0} - \frac{3}{2} L_{s2} = \frac{1}{2} L_{ABmin} \\ L_q \approx \frac{3}{2} L_{s0} + \frac{3}{2} L_{s2} = \frac{1}{2} L_{ABmax} \end{cases}$$


	L_d	L_q	L_q/L_d
名称	直轴电感	交轴电感	凸极比
意义	越大,弱磁能力越强; 电感越大,感生电动势越大	电感越大,感生电动势 越大	凸极比越大,弱磁时磁 阻转矩分量越大
应用场合	矢量控制时需要	矢量控制时需要	MTPC控制关键参数

对于三相电机,直轴、交轴电感具体指什么?

坐标变换

<u>Clarke</u>. Park变换


静止坐标系	旋转坐标系
三相ABC/两相 $lpha/eta$	两相d/q
所有物理量为交流量 电压、电感、磁链、电感	所有物理量为直流量 电压、电感、磁链、电感
两相之间相互耦合(互感不为零)	两相完全解耦(互感为零)
控制难度大	控制难度小
通过Park变换到旋转坐标系	通过反Park变换到旋转坐标系

- 恒幅值变换
- 恒功率变换
- D/Q轴相位关系

电气零位与磁偏角⑤

形成原因与应用校准

电气零位	机械零位	磁偏角
A相绕组中心线所对应位置	旋变或光编指示的零位	转子N极中心线处于电气零位时,反馈显示的位置角
由定子铁芯、绕组形式所决定	由旋变安装位置所决定	由电气零位和旋变安装共同决定
定子热套时铁芯圆周位置影响电机电气零 位	反馈的安装位置(与定转子的相对位置) 影响机械零位	需要通过Phasing整定电机磁偏角(也可通过反馈安 装位置调整)
生产过程一般对电气零位不做严格要求	安装过程对机械零位不做要求	可以要求电机出厂时磁偏角为指定值

电机转矩方程

转矩系数®

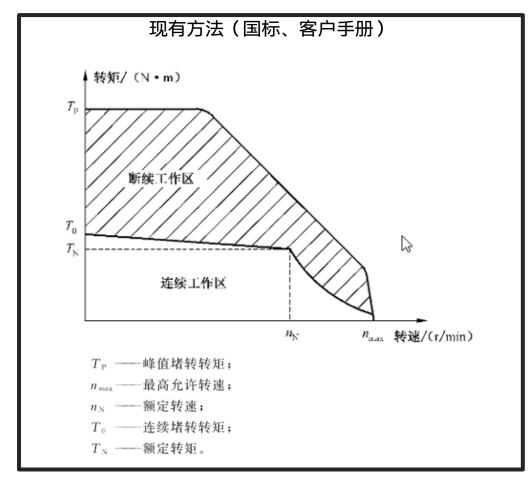
$$T_{em} = \frac{3}{2}p(\psi_d I_q - \psi_q I_d)$$
$$k_e = \frac{50\sqrt{2}\pi}{\sqrt{3}}p\psi_{pm}$$

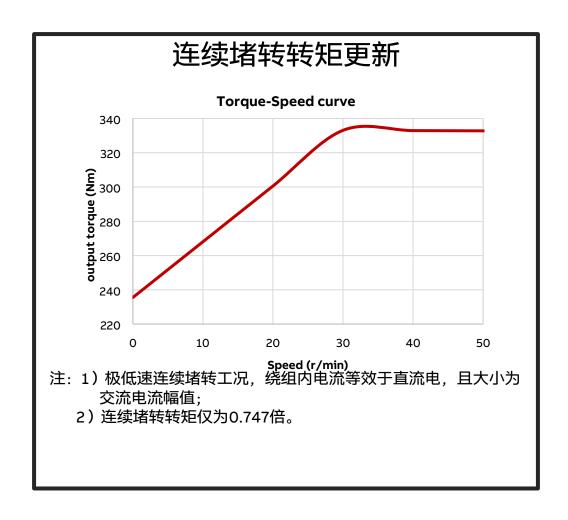
大部分电机采用Id=0控制:
$$k_T = \frac{\frac{3}{2}p\psi_{pm}I_q}{I_q/\sqrt{2}} = \frac{3}{\sqrt{2}}p\psi_{pm} = \frac{1}{60.46}k_e$$

注:1) 电机通入单位线电流产生的平均电磁转矩为电机的转矩系数:

- 2)上式为理论推导,实际电机受温度和电枢反应影响,转矩系数的试验测量值会略低于理论值;
- 3) 对于Id ≠ 0的控制,转矩系数和反电势系数之间关系为非线性关系;
- 4)电机输出转矩的波动大小不仅与电流的正弦性(时间分量)有关,还与齿槽效应(空间分量)有关,过载输出时,还会 受磁路饱和程度影响(磁性材料饱和区的非线性特性)。

电机机械方程

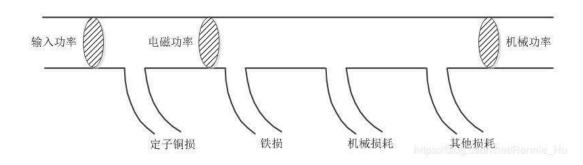

转动惯量®


$$T_{em} = T_L + J\frac{d\Omega}{dt} + B\Omega$$

转动惯量($kg \cdot m^2, kg \cdot cm^2$)——旋转运动惯性大小的量度; 转动惯量越大,旋转角速度变化越慢,动态响应速度越慢; 大多应用场合会指定电机和负载的惯量匹配范围值(J_L/J_M);

性能匹配

工作区⑩



- 所有工况点需落在工作区(包括断续工作区和连续工作区)内;
- 一个完整工作循环中转矩的均方根值为负载等效转矩,转速的绝对值均值为负载等效转速,对应的等效工作点需落在连续工作区内;
- 保证每个断续工作点有足够的温升裕量(持续时间电机不发生过热报警);

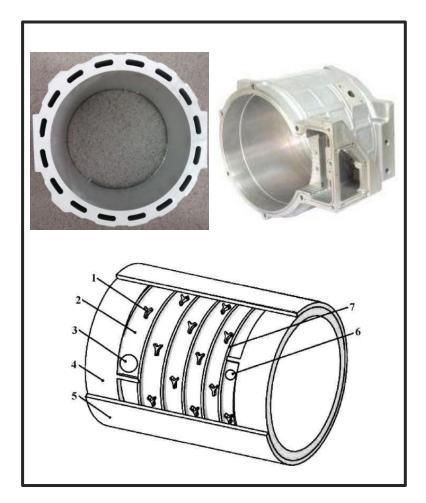
电机的热分析

发热与散热

等效物理量		
电压差	电流	电阻
温度差	热流	热阻

- 散热过程中热流为各部分损耗;
- 热阻越大,散热能力越差,传热后温升越高;
- 热稳定后, 电机散热量等于损耗之和(能量守恒定律);
- 降低损耗可以降低温升(优质铜线、高性能硅钢片等);
- 降低热阻可以降低温升(内部:定子灌封;外部:强制冷却);

绝约	象 等 级	A	E	В	F	Н
极限工作温度/C		105	120	130	155	180
热点	《温差/C	5	5	10	15	15
温升/K	电阻法	60	75	80	100	125
	温度计法	55	65	70	85	105


- ▶A级绝缘材料: 经过浸渍或使用时浸于油中的棉纱、丝和纸等有机材料.
- ▶E级绝缘材料:聚脂树脂、环氧树脂及三醋酸纤维等制成的绝缘薄膜。
- >F级绝缘: 云母、石棉及玻璃纤维等材料浸漆.

散热方式^①

自然冷却、强制风冷和水冷

自然冷却

强制风冷

水冷

谢谢!

